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Abstract—In this paper, we propose deliverable partitioning
in prompt design to assist Large Language Models (LLMs) in
improving response correctness for network design and configu-
ration. While recent research has explored the use of LLMs to
enhance network management efficiency, their responses often
remain inconsistent, incomplete, or inaccurate. Often, LLM-
generated configurations contain missing or erroneous configura-
tion commands, which can lead to operational failures. Our pro-
posed partitioning methodology aims to mitigate these issues by
decomposing complex network configuration tasks into simplified
and focused tasks. To evaluate the effectiveness of this approach,
we introduce a scoring policy and conduct extensive experiments
across three levels of network complexity and varying degrees
of design choice ambiguity. We also compare the performance
of leading LLMs, including ChatGPT, Copilot, and DeepSeek.
Our findings indicate that partitioning the inquiry process leads
to more accurate and consistent responses than non-partitioned
approaches, especially in scenarios where design parameters are
explicitly defined and leave some but small room, as ambiguity,
for inference.

I. INTRODUCTION

Large Language Models (LLMs), as a representation of
Natural Language Processing, boast tremendous capabilities
for solving a wide variety of tasks that require knowledge
and expertise across numerous disciplines. LLMs make this
possible by being trained on an impressive sea of information
[1]. Existing LLMs are primarily trained for general-purpose
tasks such as drafting personal and professional documents
or summarizing passages. Yet, they have also demonstrated
knowledge of specialized topics, including engineering and
design. Their remarkable ability to interpret and generate
human language, as well as identify patterns and structures
within large amounts of information, makes them powerful
tools for supporting a variety of personal and professional
tasks. The rapid and widespread adoption of LLMs for gener-
ating and extracting information [2] offers a glimpse into how
integrating artificial intelligence (AI) with human capabilities
can enhance productivity across a wide range of activities.

In human-LLM interactions, the LLM analyzes the user’s
input prompt to identify intent and scours its vast knowledge
to generate a satisfactory response. However, due to the broad
range of information used during training, general-purpose
LLMs may not yet be fully equipped for specialized do-
mains. Although they demonstrate impressive abilities in basic
reasoning and logical tasks, LLMs often struggle to apply
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critical thinking and in-depth analysis to complex engineering
problems that require domain-specific expertise.

Network engineering tasks—such as designing, provision-
ing, modifying, or removing network elements—are often
arbitrary and vary significantly in complexity and purpose.
While specialized LLMs may be trained to handle such diverse
tasks, general-purpose LLMs may fall short or produce error-
prone solutions. Therefore, it is essential to explore strategies
that enhance their network configuration capabilities. One such
approach involves prompt engineering—crafting simplified,
focused input queries to reduce ambiguity and improve user-
LLM communication. Experiments have shown that LLMs
can struggle with complex prompts, often resulting in inac-
curate responses. Verbose or unclear prompts can obscure
the user’s intent and derail the model’s output. Additionally,
long and intricate inputs may exceed the LLM’s memory
limits, potentially degrading the quality of the response. These
findings suggest that prompting plays a critical role in effective
LLM interaction. While some strategies propose using coded
schematics for network configuration prompts [3], we argue
that well-designed text prompts may be sufficient to achieve
optimal results.

To improve the correctness of LLM responses, we investi-
gate the following hypothesis: a partitioned prompting process
increases the likelihood of generating LLM responses with
near-optimal accuracy for network configuration tasks. To test
this hypothesis, we first introduce scoring policies to evaluate
the accuracy of LLM responses to identify errors. We then
propose partitioning the query process to enhance the clarity
and correctness of prompts related to network configuration.
The underlying intuition is that process partitioning evidences
the user’s intent and simplifies the structure of the request,
making it easier for the LLM to interpret. This strategy can
also be combined with the partitioning of network elements
to further streamline the prompt. We conduct extensive eval-
uations of the proposed approach across leading LLMs and
assess the results using our scoring policy. Additionally, we
design the experiments to account for prompt ambiguity and
varying levels of network complexity, allowing us to categorize
prompt difficulty. Our results demonstrate that the proposed
approach achieves a high level of correctness, as measured by
our scoring policy. This result marks additional improvement
over prior work using schematic prompts for network design
and description [3].

The remainder of the paper is organized as follows. Sec-
tion II discusses related work on LLMs used for network
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configuration. Section III discusses the proposed process-
prompt partition method and the scoring policy created for
the evaluation of the LLM response, and complexity and
ambiguity as factors that affect response correctness. Section
IV presents the test set up and results of our evaluations.
Section V presents our conclusions.

II. RELATED WORK

The use of LLMs for network configuration and design
is becoming of large interest [4]. Network implementation is
often complex, where even minor methodological intricacies
can significantly impact the overall system performance [5].
Applying verification technologies in the networking domain
has proven challenging, as most state-of-the-art approaches
rely on rule-based methods or direct human intervention [6].
Rule-based verification is tedious and requires a vast set of
rules to accommodate the wide range of potential model
responses. Meanwhile, human intervention, often seen as the
ultimate solution to LLM verification, undermines the goal of
full automation. Additionally, because LLMs primarily use text
as their medium of expression, their responses are inherently
subjective, making verification ambiguous. To address these
challenges, recent work has proposed innovative verification
methods by converting text-based responses into alternative,
more analyzable representations. Besta et al [7] and Sun et
al. [8] proposed a graph-based approach that encodes LLM
responses visually, enabling enhanced analysis and clarity.
Visualizing LLM outputs through alternative mediums reduces
textual ambiguity and enhances specificity.

Although response verification is crucial for autonomous
network implementation systems, it does not eliminate the
possibility of generating invalid, incorrect, or incomplete re-
sponses [9]. This challenge arises primarily from two fac-
tors: the absence of networking-specialized LLMs and the
inherent randomness of general-purpose models, which can
occasionally produce hallucinations—responses that are either
irrelevant to the input or partially formed [10]. As a result,
zero-touch network and service management systems often
rely on supplementary techniques such as prompt engineering
and domain-specific training [11]. Other communication be-
yond text has been also tested, using schematics on text-based
LLM inputs [3]. It is reported that LLMs detection of network
topology improves but the responses from LLMs continue to
inject errors.

One promising solution is NetLLM, which enhances
general-purpose LLMs by incorporating network-specific
knowledge, allowing them to adapt to a broad range of
networking scenarios [12]. This strategy improves model per-
formance without requiring the development of entirely new
systems. In contrast, Ifland et al. [13] introduced a networking-
focused LLM built from the ground up using OpenAI’s
ChatGPT as a foundation.

III. INPUT-PROMPT ENHANCEMENTS

Enhancing an input prompt can reduce ambiguities in
complex problem statements and simplify the context for
better comprehension and analysis of the objective. While
traditional prompt-enhancement methodologies may lead to

modest improvements in response accuracy, determining the
optimal amount of information to include remains a challenge.
LLM responses often degrade when provided with either too
little or too much information, mirroring how the human brain
may struggle with tasks that involve unbalanced information
loads.

We hypothesize that a concise yet well-specified input
is more effective. Although this approach is conceptually
intuitive, its practical application is challenging, especially
when condensing complex network descriptions. Graph-based
schematic prompts offer one way to represent network topolo-
gies for LLM interpretation [3], but they come with their own
limitations. In this work, we explore how to design effective
text-based prompts as a general input method for LLMs.

A. Partitioning

We propose a prompt-partitioning approach, which breaks
down a large, information-dense prompt into smaller, more
manageable segments that a language model can process more
effectively. We divide this partitioning process into network
partitioning (information given to the LLM) and process
partitioning (information requested to the LLM). Therefore,
partitioning can be applied either to the network description or
to the inquiry process—that is, the requested response. In this
work, we propose the latter. The process involves dissecting
a verbose prompt into a series of smaller task descriptions,
submitting each task to the LLM sequentially, evaluating
their individual responses, and finally aggregating the overall
response accuracy once all tasks have been addressed, as
illustrated in Figure 1.

Input prompt

Instructions
and

architecture
setings

LLM

Prompt for each
network device

LLM

Configuration script

Partitioned 
Input prompt

Fig. 1: Example of network partitioning for a single task.
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a) Network Partitioning: Because partitioning can be
applied in various ways, it is important to evaluate different
levels of granularity to analyze trends in response accuracy. We
theorize that, ideally, a partitioned prompt for network configu-
ration would involve only a single network element. However,
the optimal level of partitioning may vary depending on the
network’s complexity and the capabilities of the LLM being
used. Table I presents different partitioning levels, organizing
them from the most granular (i.e., partitioning by individual
network elements) to the least. Each level corresponds to a
different number of prompts, with the most granular level
involving the highest number of individual prompts. Once the
network has been partitioned, a consolidation prompt must
be crafted to combine all previous responses and generate a
comprehensive output for further evaluation.

TABLE I: Network partitioning levels.
Partitioning Level (%)

Partitions each network element separately 100
Partitions network into unique subnets 75
Partitions based on the type of network element 50
Separates network and summary prompt 25
Contains all information 0

b) Deliverable Partitioning: Different from network par-
titioning, in deliverable partitioning the intent or requested
deliverable is singled out in a prompt. Moreover, the network
is fully described at once, therefore providing all network
information to the LLM. Therefore, the requested task is a
single operation in what the LLM can focus in. The process
is then simpler than in network partitioning.

B. Response Scoring Policy

Although partitioning addresses the challenge of improving
response correctness, proper frameworks to grade a received
response need to be established for verification. As we delve
into the evaluation of both network, as well as deliverable par-
titioning, we define unique grading schemes for each purpose.

a) Scoring policy for Network Partitioning: Network
partitioning aims to reduce the number of network elements an
LLM needs address in order to provide an optimal response,
and because networks are intrinsically complex, it is difficult
to potentially identify the various types of errors an LLM
could generate. For this reason, we categorize the scoring
policy of such partitioned responses into four types of errors:
Incorrect command, Missing commands, IP addressing errors,
and Topology errors and allocate 25 penalty points for each
type. An ideal solution without any error would be scored 100
points. Each high-level error is further fine-tuned into smaller
error in that category with partial score deductions.

Table II shows the proposed scoring methodology that is
performed at the end of the final prompt. Unlike traditional
pass/fail systems, our proposed scoring system provides in-
sights on the effectiveness of LLM responses. The culmination
of a prompt-enhancement methodology, and response-scoring
framework, allow for proper evaluation of an LLM in a wide
range of network configuration scenarios.

b) Scoring Policy for Deliverable Partitioning: When
evaluating deliverable partitioning, it is essential to assess each
deliverable independently, ensuring that the LLM is guided
by a single, well-defined objective at a time. Unlike prompt-
based partitioning, deliverable partitioning requires a more
granular evaluation approach due to the increased potential
for variability across multiple outputs. To address this, we
introduce an alternative scoring system specifically tailored
to capture the nuances of multi-deliverable responses. This
system fairly accounts for variability and includes additional
error metrics to provide a more comprehensive assessment of
LLM performance.

Table III outlines the proposed scoring methodology, which
uniformly penalizes errors in LLM-generated responses while
maintaining a balanced approach between functions that LLMs
perform well and those that do not. In the context of deliver-
able partitioning, this methodology aims at providing a fair
treatment of all error types by assigning consistent weight
across different categories, thereby supporting an objective and
comprehensive evaluation.

TABLE II: Proposed scoring scheme for network partitioning.
Type of Error Penalty (%)

Incorrect Command 25
Invalid Syntax 12.5
Configure Terminal omitted 6.25
Spelling Mistake 6.25
Missing Commands 25
No Routing Commands provided 12.5
Not all interfaces are configured 12.5
IP Addressing Errors 25
Wrong IP incl. the first octet 12.5
Wrong IP address excl. first octet 12.5
Incorrect subnet mask 6.25
Topology Errors 25
Wrong number of network elements 12.5
Invalid Links 10
Incorrect edge router configuration 2.5

IV. EVALUATION

We test our prompts on ChatGPT-4o, Microsoft Copilot, and
Deepseek, across network topologies of varying complexity to
identify observable trends. We apply partitioning of networks
and processes to identify the most effective approach and to
assess the strengths and weaknesses of each approach in the
context of network configuration. For each scenario, responses
are evaluated using the proposed scoring policy.

A. Experiment 1: The Impact of Network Partitioning

For clarity, we initially employ prompts with minimal
ambiguity but with all the necessary features of network con-
figuration, such as IP addresses, subnet masks, and hostnames.
We evaluate three networks of varying complexity, testing each
prompt twenty-five times to determine the average response
accuracy. Additionally, we assess prompts with different de-
grees of ambiguity for a complex network scenario, where the
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TABLE III: Proposed scoring scheme for deliverable partitioning.
Type of Error Penalty (%)

All IP’s are not provided 5
All subnet masks are not provided 5
All hostnames not defined 5
All interfaces not defined 5
“Configure terminal” is missing 5
Routing commands not provided 5
Router “exit” keyword is missing 5
Router “end” keyword is missing 5
Incorrect IP address 5
Incorrect subnet mask 5
Incorrect hostname 5
Incorrect routing command 5
Incorrect routing protocol used 5
Incorrect number of nodes defined 5
Invalid topology constructed 5
Incorrect syntax 5
Unnecessary commands 5
Spelling error 5
Asked for user input 5
Combined all commands in one prompt 5

LLM is required to infer configuration parameters and make
controlled design decisions. Microsoft’s Copilot is used for
the breadth of our evaluation. Figure 2 illustrates the topology
of the evaluated medium-complexity network. We begin by
providing a fully descriptive prompt for the target network and
then apply the partitioning methodology described in Table I
to divide the task into one or more prompts. Each response is
subsequently evaluated using our proposed scoring policy.

H3

H1      R1         R2             R3      R4

R5

H2

IP@15

IP@16

IP@11
IP@12

IP@13
IP@14

IP@1   IP@2 IP@3  IP@4   IP@5       IP@6      IP@7   IP@8      IP@9     IP@10

Fig. 2: Example of an evaluated network topology.

Figure 3 shows the results obtained with network partition-
ing, highlighting the performance improvement achieved by
partitioning at the network-element level. The upward trend
in average response accuracy is further supported by a notice-
able drop in standard deviation, indicating more stable and
consistent outputs—less affected by the intrinsic randomness
of typical LLMs. Notably, this stability persists even with
the introduction of ambiguity, demonstrating the scalability
and robustness of the partitioning approach. These promising
results are especially significant given that they are achieved
using a general-purpose LLM like Microsoft Copilot, which,
despite being trained on extensive datasets, may lack specific
focus on networking or communications. This suggests that
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Fig. 3: Average response accuracy of network partitioned prompts
with Copilot.

finer-grained partitioning can enhance performance in domain-
specific tasks by minimizing the model’s dependence on broad,
unrelated knowledge.

B. Experiment 2: Comparison of Leading LLMs
Our partitioning methodology can be seamlessly adapted

to a wide range of LLMs, enabling analysis of its cross-
model performance. From the many LLMs available, we
conduct extensive testing on three widely recognized models:
Microsoft’s Copilot, High-Flyer’s DeepSeek, and OpenAI’s
ChatGPT. To ensure a fair comparison, we construct a con-
sistent set of partitioned prompts for a single network and
evaluate their performance across the three LLMs, running
twenty-five iterations per model. As in previous experiments,
we apply the response scoring policy described in Table II to
assess correctness and consistency.

Figure 4 shows that Microsoft’s Copilot outperforms the
other models, with DeepSeek and ChatGPT following, high-
lighting Copilot’s inherent strength in analyzing shorter, more
concise input prompts. Despite noticeable performance dif-
ferences among the models, each demonstrates a satisfactory
average response accuracy. This suggests that the partitioning
methodology is broadly adaptable and capable of consistently
generating strong responses across different LLMs.

C. Experiment 3: The Impact of Deliverable Partitioning
To thoroughly explore different forms of partitioning, we

next examine deliverable partitioning, which is a strategy
aimed at reducing an LLM’s reliance on multi-part output gen-
eration. In this experiment, we compare the response accuracy
of partitioned versus non-partitioned prompts using ChatGPT-
4o across three levels of ambiguity. We define ambiguity as
the absence of necessary information, requiring the LLM to
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Fig. 4: Average response accuracy of partitioned prompts with
various LLMs.

infer the prompt’s intent. At ambiguity level 0, all relevant
information is provided; at level 1, IP address definitions are
omitted; and at level 2, interface names are also omitted.
We request two deliverables: (1) a set of router configuration
commands to initialize all network elements, and (2) routing
commands to establish end-to-end connectivity. Using our
scoring methodology, outlined in Table III, we also perform 25
iterations per prompt to gather statistical insights and identify
accuracy trends.

Figure 5 shows the results of the experiments, highlighting
the ability of the prompt-partitioning methodology to improve
the overall response accuracy. When reducing the deliverables
requested, the LLM has a better chance of solving the problem
statement and better recognizes the intent of the end-user,
effectively providing a greater average response accuracy.

The figure highlights that prompts with no ambiguity—i.e.,
with all parameters fully specified (100% specificity), achieve
an average accuracy improvement of approximately 5% when
partitioned. However, this comes with higher variability, as
indicated by a larger standard deviation. In contrast, prompts
with one degree of ambiguity show a slightly lower average
accuracy but exhibit reduced variability, suggesting more con-
sistent, though slightly less accurate, responses.

Interestingly, in the case of two degrees of ambiguity,
where the LLM must infer more information, the partitioned
approach yields higher average accuracy than the previous two
scenarios. Meanwhile, the non-partitioned approach performs
worse than before. This improvement in the partitioned case
likely stems from the model’s initial parameter selections guid-
ing subsequent ones more effectively. However, this gain in
accuracy is accompanied by an increase in standard deviation,
reflecting greater variability in the results.
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Fig. 5: Average response accuracy of deliverable-partitioned
prompts with varying degrees of ambiguity.

These results indicate a complex and random process to
respond to users’ intents by an LLM. They indicate that
leaving the LLM to make more selections may provide some
accurate results but at the same time more variability of
responses. However, if the ambiguity in prompts is measured,
there is more consistency in the responses, which may indicate
more predictable results. It is important to note that the value
of LLMs in network configuration and design is anchored in
using a high degree of ambiguity as that permits a higher
degree of automation.

We also identify the quality of LLM responses by analyzing
not only the average accuracy but the frequency in which high-
quality responses are obtained by analyzing the cumulative
distribution function (CDF) of the accuracy of the prompts.
These CDF are presented as a function of the degree of
ambiguity, which is defined as the number of parameters
not specified with the prerogative of testing an LLM to take
educated decisions on network design, as showcased in Fig.
6. While it boasts better results regardless of the level of
ambiguity involved, partitioning excels at higher ambiguity
degrees, which stems from the greater variation in the response
pool of the LLM at higher degrees of ambiguity. Reducing
the number of deliverables reduces the size of the potential
response pool, further improving the overall solution capabil-
ities of the model.

Fig. 6.a shows the CDF of prompts with 100% speci-
ficity (no ambiguity) for the partitioned and non-partitioned
approaches. As the figure shows, the partitioned approach
accumulates higher responses faster than the non-partitioned
approach. In fact, the graph shows that the highest accuracy
reached by the non-partitioned approach is 80% while that of
the partitioned approach is about 87%.
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Fig. 6: CDF of the response accuracy.

For cases with 1 degree of ambiguity (one element of design
left to the LLM to select, such as IP addresses), as shown in
Figure 6.b, the CDF shows again that the partitioned approach
achieves cases with higher accuracy than the non-partitioned
one, and also that in general, most cases of the partitioned
approach achieve higher accuracy than the non-partitioned
approach.

For cases with 2 degrees of ambiguity, Figure 6.c, namely
the IP addresses and the routing information, the results show
that the partitioned approach again produces responses with
higher accuracy than those from the non-partitioned one. In
fact, this figure shows that the partitioned approach achieves
75% accuracy and higher, while the non-partitioned approach
achieves 60% accuracy and up to 85%.

V. CONCLUSIONS

We proposed partitioning of the prompting process as a
method to increase the correctness of LLM responses to
design and configure data networks. The partitioning of the
process focuses on simplifying the design intent (deliverable)
to provide specific and correct answers. The objective is to
streamline the LLM responses to the network equipment for
rapid configuration. We proposed multiple scoring policies to
evaluate the configuration commands and to identify errors for
improvements. The prompting deliverables partition method
was tested with non-partitioned network descriptions and
compared with prompts that partition the network description.
The results show that deliverable partitioning achieves higher
average accuracy than the non-partitioning approach and also
offers more consistent results. These results also provide
an insight into using LLMs for making design choices and
inferring network parameters rather than using them for well-
defined tasks.
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